116 research outputs found

    What do the terms resistance, tolerance, and resilience mean in the case of Ostrea edulis infected by the haplosporidian parasite Bonamia ostreae

    Get PDF
    The decline of the European flat oyster Ostrea edulis represents a loss to European coastal economies both in terms of food security and by affecting the Good Environmental Status of the marine environment as set out by the European Council's Marine Strategy Framework Directive (2008/56/EC). Restoration of O. edulis habitat is being widely discussed across Europe, addressing key challenges such as the devastating impact of the haplosporidian parasite Bonamia ostreae. The use of resistant, tolerant, or resilient oysters as restoration broodstock has been proposed by restoration practitioners, but the definitions and implications of these superficially familiar terms have yet to be defined and agreed by all stakeholders. This opinion piece considers the challenges of differentiating Bonamia resistance, tolerance, and resilience; challenges which impede the adoption of robust definitions. We argue that, disease-resistance is reduced susceptibility to infection by the parasite, or active suppression of the parasites ability to multiply and proliferate. Disease-tolerance is the retention of fitness and an ability to neutralise the virulence of the parasite. Disease-resilience is the ability to recover from illness and, at population level, tolerance could be interpreted as resilience. We concede that further work is required to resolve practical uncertainty in applying these definitions, and argue for a collaboration of experts to achieve consensus. Failure to act now might result in the future dispersal of this disease into new locations and populations, because robust definitions are important components of regulatory mechanisms that underpin marine management.</p

    WP4 result summary report relevant for "Environmental Best Practice"

    Get PDF
    This report presents a distillation of the main findings from ECO2 WP4, together with information available from other EU and Nationally funded projects, presented within and specifically for the context of Environmental Best Practice. The information and key messages contained within this deliverable (D4.4) will be directly applied to the project wide “Guidance on Environmental Best Practice” and will form the basis of Chapter 6 “Assessing biological impact of CO2 leakage”. There were 8 key findings that came from the ECO2 research conducted with WP4: - Exposure to elevated levels of CO2 has a negative impact on marine organisms - There is a wide range of CO2 sensitivities across different marine taxa and groups - Care must be taken when predicting species specific response and sensitivity to CO2 for Environmental Risk Assessments - Exposure to elevated levels of CO2 has a negative impact on marine communities, biodiversity and ecosystem processes / functions - The leakage / release of formation water can have a negative impact on marine organisms - Other environmental factors could exacerbate or ameliorate the impact of CCS leakage - Some biological responses may be employed in a programme of Environmental Monitoring - Collecting spatially and temporally referenced biological data is important for creating effective Baseline Survey

    Marine baseline and monitoring strategies for Carbon Dioxide Capture and Storage (CCS)

    Get PDF
    The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey

    Molecular phylogenetics of deep-sea amphipods (Eurythenes) reveal a new undescribed species at the Porcupine Abyssal Plain, North East Atlantic Ocean

    Get PDF
    The genus Eurythenes S. I. Smith in Scudder, 1882, has been the focus of integrated molecular and morphological taxonomy studies in recent years, resulting in the number of species in the genus increasing from three to eight. Samples of Eurythenes spp. collected using free-fall baited traps from the Porcupine Abyssal Plain (PAP), North East Atlantic Ocean, at 4850 m were examined in this study to investigate the identity of the species found using molecular barcoding methods. Mitochondrial COI analysis confirms the presence of E. maldoror at PAP and data from the nuclear 28S rDNA gene provides independent confirmation of this observation. A new, undescribed species that is clearly divergent from all other known species and molecular lineages was identified, which can be distinguished morphologically from known species. A specimen within the E. magellanicus lineage was also found at the site. We discuss the presence of these three Eurythenes species at the Porcupine Abyssal Plain

    Competitive interactions moderate the effects of elevated temperature and atmospheric CO2 on the health and functioning of oysters

    Get PDF
    Global increases in sea temperatures and atmospheric concentrations of CO2 may affect the health of calcifying shellfish. Little is known, however, about how competitive inter actions within and between species may influence how species respond to multiple stressors. We experimentally assessed separate and combined effects of temperature (12 or 16°C) and atmospheric CO2 concentrations (400 and 1000 ppm) on the health and biological functioning of native (Ostrea edulis) and invasive (Crassostrea gigas) oysters held alone and in intraspecific or inter specific mixtures. We found evidence of reduced phagocytosis under elevated CO2 and, when combined with increased temperature, a reduction in the number of circulating haemocytes. Generally, C. gigas showed lower respiration rates relative to O. edulis when the species were in intraspecific or interspecific mixtures. In contrast, O. edulis showed a higher respiration rate relative to C. gigas when held in an interspecific mixture and exhibited lower clearance rates when held in intraspecific or interspecific mixtures. Overall, clearance rates of C. gigas were consistently greater than those of O. edulis. Collectively, our findings indicate that a species’ ability to adapt metabolic processes to environmental conditions can be modified by biotic context and may make some species (here, C. gigas) competitively superior and less vulnerable to future climatic scenarios at local scales. If these conclusions are generic, the relative role of species interactions, and other biotic parameters, in altering the outcomes of climate change will require much greater research emphasis

    Anthropogenic sources of underwater sound can modify how sediment-dwelling invertebrates mediate ecosystem properties

    No full text
    Coastal and shelf environments support high levels of biodiversity that are vital in mediating ecosystem processes, but they are also subject to noise associated with mounting levels of offshore human activity. This has the potential to alter the way in which species interact with their environment, compromising the mediation of important ecosystem properties. Here, we show that exposure to underwater broadband sound fields that resemble offshore shipping and construction activity can alter sediment-dwelling invertebrate contributions to fluid and particle transport - key processes in mediating benthic nutrient cycling. Despite high levels of intra-specific variability in physiological response, we find that changes in the behaviour of some functionally important species can be dependent on the class of broadband sound (continuous or impulsive). Our study provides evidence that exposing coastal environments to anthropogenic sound fields is likely to have much wider ecosystem consequences than are presently acknowledge

    Metabolic rates are significantly lower in abyssal Holothuroidea than in shallow-water Holothuroidea

    Get PDF
    Recent analyses of metabolic rates in fishes, echinoderms, crustaceans and cephalopods have concluded that bathymetric declines in temperature- and mass-normalized metabolic rate do not result from resource-limitation (e.g. oxygen or food/chemical energy), decreasing temperature or increasing hydrostatic pressure. Instead, based on contrasting bathymetric patterns reported in the metabolic rates of visual and non-visual taxa, declining metabolic rate with depth is proposed to result from relaxation of selection for high locomotory capacity in visual predators as light diminishes. Here, we present metabolic rates of Holothuroidea, a non-visual benthic and benthopelagic echinoderm class, determined in situ at abyssal depths (greater than 4000 m depth). Mean temperature- and mass-normalized metabolic rate did not differ significantly between shallow-water (less than 200 m depth) and bathyal (200–4000 m depth) holothurians, but was significantly lower in abyssal (greater than 4000 m depth) holothurians than in shallow-water holothurians. These results support the dominance of the visual interactions hypothesis at bathyal depths, but indicate that ecological or evolutionary pressures other than biotic visual interactions contribute to bathymetric variation in holothurian metabolic rates. Multiple nonlinear regression assuming power or exponential models indicates that in situ hydrostatic pressure and/or food/chemical energy availability are responsible for variation in holothurian metabolic rates. Consequently, these results have implications for modelling deep-sea energetics and processes

    Ephemeral detection of Bonamia exitiosa (Haplosporida) in adult and larval European flat oysters Ostrea edulis in the Solent, United Kingdo

    Get PDF
    The haplosporidian parasite Bonamia exitiosa was detected using PCR in four adult and six larval brood samples of the European flat oyster Ostrea edulis from the Solent, UK. This represents the second reported detection of this parasite along the south coast of England. Adult oysters were collected and preserved from seabed populations or restoration broodstock cages between 2015 and 2018. The larvae within brooding adults sampled during 2017 and 2018 were also preserved. Molecular analysis of all samples was performed in 2019. The DNA of B. exitiosa was confirmed to be present within the gill tissue of one oyster within the Portsmouth wild fishery seabed population (n = 48), sampled in November 2015; the congeneric parasite Bonamia ostreae was not detected in this individual. This is the earliest record of B. exitiosa in the Solent. Concurrent presence of both B. ostreae and B. exitiosa, determined by DNA presence, was confirmed in the gill and heart tissue of three mature individuals from broodstock cages sampled in October 2017 (n = 99), two from a location on the River Hamble and one from the Camber Dock in Portsmouth Harbour. B. exitiosa was not detected in the November 2018 broodstock populations. A total of six larval broods were positive for B. exitiosa, with five also positive for B. ostreae. None of the brooding adults were positive for B. exitiosa suggesting that horizontal transmission from the surrounding environment to the brooding larvae is occurring. Further sampling of broodstock populations conducted by the Fish Health Inspectorate at the Centre for Environment, Fisheries and Aquaculture Science in June 2019 did not detect infection of O. edulis by B. exitiosa. These findings together suggest that the pathogen has not currently established in the area

    Uncovering the environmental drivers of short-term temporal dynamics in an epibenthic community from the Western English Channel

    Get PDF
    Benthic communities, critical to the health and function of marine ecosystems, are under increasing pressure from anthropogenic impacts such as pollution, eutrophication and climate change. In order to refine predictions of likely future changes in benthic communities resulting from these impacts, we must first better constrain their responses to natural seasonality in environmental conditions. Epibenthic time series data (July 2008–May 2014) have been collected from Station L4, situated 7.25 nautical miles south of Plymouth in the Western English Channel. These data were analysed to establish patterns in community abundance, wet biomass and composition, and to link any observed patterns to environmental variables. A clear response to the input of organic material from phytoplankton blooms was detected, with sediment surface living deposit feeders showing an immediate increase in abundance, while predators and scavengers responded later, with an increase in biomass. We suggest that this response is a result of two factors. The low organic content of the L4 sediment results in food limitation of the community, and the mild winter/early spring bottom water temperatures allow the benthos to take immediate advantage of bloom sedimentation. An inter-annual change in community composition was also detected, as the community shifted from one dominated by the anomuran Anapagurus laevis to one dominated by the gastropod Turitella communis. This appeared to be related to a period of high larval recruitment for T. communis in 2013/2014, suggesting that changes in the recruitment success of one species can affect the structure of an entire community
    corecore